If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4t^2+13t+12=0
a = -4; b = 13; c = +12;
Δ = b2-4ac
Δ = 132-4·(-4)·12
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-19}{2*-4}=\frac{-32}{-8} =+4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+19}{2*-4}=\frac{6}{-8} =-3/4 $
| 41=52=m | | -6x+12=4x+2 | | x+0.18x=7250 | | 8(u+1)=56 | | 2(5x-12)=6 | | 14x-8=11x+7 | | 5^(3x+4)=30 | | 8x+5-3x=6 | | k/5+6=8 | | -.25+-.5+5=-x | | 20x-20=10x+10 | | B2H5x/E4R=T3K/Y | | 3(15-4x)+5(3x-7)=5 | | (x^2-2)^2+4(x-1)^2-4(x^2)(x-1)=0 | | 20=6(x-5) | | 3/d=-81 | | X2+2x-545=0 | | 44x+2+45=180 | | x-9.75=21.49 | | y=-7/3 | | X2+(x+1)2=545 | | 5.4=2.3−0.6y | | -3x4=14 | | 4x+84=32 | | 5(6x+1)=3(x-8)+2 | | x/14=-(6) | | 6.5(2d-3)+d=8.5 | | 4/5-5/8x=7/20x-1 | | y=3(-2)- | | 253=186-v | | 8-3y=2y-7 | | (2/3x)-7=11 |